Radial k-t FOCUSS for high-resolution cardiac cine MRI.
نویسندگان
چکیده
A compressed sensing dynamic MR technique called k-t FOCUSS (k-t FOCal Underdetermined System Solver) has been recently proposed. It outperforms the conventional k-t BLAST/SENSE (Broad-use Linear Acquisition Speed-up Technique/SENSitivity Encoding) technique by exploiting the sparsity of x-f signals. This paper applies this idea to radial trajectories for high-resolution cardiac cine imaging. Radial trajectories are more suitable for high-resolution dynamic MRI than Cartesian trajectories since there is smaller tradeoff between spatial resolution and number of views if streaking artifacts due to limited views can be resolved. As shown for Cartesian trajectories, k-t FOCUSS algorithm efficiently removes artifacts while preserving high temporal resolution. k-t FOCUSS algorithm applied to radial trajectories is expected to enhance dynamic MRI quality. Rather than using an explicit gridding method, which transforms radial k-space sampling data to Cartesian grid prior to applying k-t FOCUSS algorithms, we use implicit gridding during FOCUSS iterations to prevent k-space sampling errors from being propagated. In addition, motion estimation and motion compensation after the first FOCUSS iteration were used to further sparsify the residual image. By applying an additional k-t FOCUSS step to the residual image, improved resolution was achieved. In vivo experimental results show that this new method can provide high spatiotemporal resolution even from a very limited radial data set.
منابع مشابه
Improved k-t FOCUSS using a sparse Bayesian learning
Introduction: In dynamic MRI, spatio-temporal resolution is a very important issue. Recently, compressed sensing approach has become a highly attracted imaging technique since it enables accelerated acquisition without aliasing artifacts. Our group has proposed an l1-norm based compressed sensing dynamic MRI called k-t FOCUSS which outperforms the existing methods. However, it is known that the...
متن کاملMMSE optimal non-local motion compensation for compressed sensing cardiac cine imaging using k-t FOCUSS
Introduction: Compressed sensing (CS) tells us that the perfect reconstruction is possible if the nonzero support in transform domain is sparse and sampling basis are incoherent [1]. By exploiting that dynamic MRI can be sparsified due to the temporal redundancy, we have demonstrated successful application of CS for cardiac imaging [2]. In particular, more accurate prediction using motion estim...
متن کاملHighly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE.
For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (∼2.5 × 2.5 mm...
متن کاملMagnetic Resonance in Medicine 57:764–775 (2007) Projection Reconstruction MR Imaging Using FOCUSS
The focal underdetermined system solver (FOCUSS) was originally designed to obtain sparse solutions by successively solving quadratic optimization problems. This article adapts FOCUSS for a projection reconstruction MR imaging problem to obtain high resolution reconstructions from angular undersampled radial k -space data. We show that FOCUSS is effective for projection reconstruction MRI, sinc...
متن کاملRetrospective reconstruction of high temporal resolution cine images from real-time MRI using iterative motion correction.
Cardiac function has traditionally been evaluated using breath-hold cine acquisitions. However, there is a great need for free breathing techniques in patients who have difficulty in holding their breath. Real-time cardiac MRI is a valuable alternative to the traditional breath-hold imaging approach, but the real-time images are often inferior in spatial and temporal resolution. This article pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 63 1 شماره
صفحات -
تاریخ انتشار 2010